III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 ADVANCED CONTROL SYSTEMS (Electronics & Control Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions All questions carry equal marks $\star \star \star \star \star$

1. (a) For the system shown in figure (1), choose $V_1(t)$ and $V_2(t)$ as state variables and obtain the state variable representation. The parameters of the system are given as $R_1 = R_2 = 1M\Omega$; $C_1 = C_2 = 1\mu F$. find the state transition matrix.

- (b) Observable canonical form.
- 3. What are the different types of non linearities. Explain each of them in detail.
- 4. Draw a phase-plane portrait of the system defined by $x_1^0 = x_1 + x_2$, $x_2^0 = 2x_1 + x_2$.
- 5. (a) Define Lyapunov stability and instability theorems.
 - (b) Define:
 - i. Positive definite
 - ii. Negative definite. Give examples for both.
- 6. (a) Explain the design of full-order state observer.
 - (b) Consider the system with

$$A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Design a full order state observer. Assume that the desired eigen values of the observer matrix are $\mu_1 = -1.8 + i2.4, \mu_2 = -1.8 - i2.4$

- 7. Show that the extremal for the functional $J(x) = \int_0^{\frac{\pi}{8}} (x^2 x^2) dt$ which satisfies the boundary conditions: $x(0) = 0, x(\frac{\Pi}{8}) = 1$
- 8. (a) Explain formulation of the optimal control problem for the minimum time problem.
 - (b) Explain formulation of the optimal control problem for the minimum energy problem.

www.firstranker.com

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 ADVANCED CONTROL SYSTEMS (Electronics & Control Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions All questions carry equal marks * * * * *

- 1. A feed back system is characterized by the closed loop transfer function: $T(s) = \frac{s^2+3s+3}{s^3+2s^2+3s+1}$. construct a state model for this system and also give the block diagram representation for the same.
- 2. (a) What is Duality property ? State and prove principle of duality.
 - (b) Define observability and controllability. Explain about Kalman'x test of controllability and observability.
- 3. What is backlash? Derive the describing function of a backlash non-linearity.
- 4. Consider a system with an ideal relay as shown in figure Determine the singular point. Construct phase trajectories, corresponding to initial conditions, (i) C(0)=2, C⁰(0)=1 and (ii) C(0)=2, C⁰(0)=1.5. Take r=2 volts and M=1.2 volts.

- 5. For the system : $x = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x$ Find a suitable lyapunov function V(x). find an upper bound on time that it takes the system to get from the initial condition $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to within the area defined by $x_1^2 + x_2^2 = 0.1$
- 6. (a) Explain the different methods of determination of observer gain matrix.
 - (b) Consider the system described by the state model $\overset{0}{x} = Ax$ where $A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$ and y = cx, $c = \begin{bmatrix} 1 & 0 \end{bmatrix}$. Obtain the state observer gain matrix. The desired given values for the observer matrix are: $\mu_1 = -5, \mu_2 = -5$.
- 7. (a) Derive 'Euler-lagrangine' equation.
 - (b) Find the curve with minimum arc length between the point x(0)=1 and the line $T_1=4$.

8. Consider the system $\dot{x_1} = x_2 + u_1, \dot{x_2} = u_2$ Find the optimal control u*(t) for the functional $J = \frac{1}{2} \int_0^4 (u_1^2 + u_2^2) dt$. Given $:x_1(0) = x_2(0) = 1, x_1(4) = 0$

www.firstranker.com

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 ADVANCED CONTROL SYSTEMS (Electronics & Control Engineering)

Time: 3 hours

Answer any FIVE questions All questions carry equal marks

1. Obtain the state model of the mechanical system shown in figure (1). Also obtain the transfer function matrix.

- 2. Consider a system described by the state equation $\dot{x} = A.X(t) + Bu(t)$ Where $A = \begin{bmatrix} 1 & e^{-t} \\ 0 & -1 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Is this system controllable at t=0 ? if yes, find the minimum energy control to drive it from x(0)=0 to $x^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ at t=1.
- 3. Obtain the describing function analysis for the system shown in figure.

- 4. A linear second order servo is described by the equation $\stackrel{\bullet}{e} + 2\xi\omega_n \stackrel{\bullet}{e} + \omega_n^{\gamma} e = 0$. where, $\xi = 0.15, \omega_n = 1rad/\sec, e(0) = 1.5$ and $\stackrel{\bullet}{e}(0) = 0$. Determine the singular point. Construct the phase trajectory, using the method of isoclines.
- 5. Determine the stability of the origin of the following system: $x_1 = x_1 - 2x_2 - x_1^3, x_2 = x_1 + x_2 - x_2^3$
- $6. \ \ \, (a)$ Explain the linear system with full-order state observer with neat block diagram.
 - (b) Design a full-order state observer for the given state model.

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix} \text{ and given values are: } \mu_1 = -5, \mu_2 = -5$$

7. (a) The functional given by

$$J(x) = \int_1^{t_1} (2x + \frac{1}{2}x^{\bullet^2}) dt, x(1) = 2, x(t_1) = 2, t_1 > 1$$
 is free.
Find the extremals.

- (b) Discuss the application of Euler-lagrangine equation and derive the equation.
- 8. (a) Explain minimum time problem.
 - (b) Explain state regulator problem in brief.

* * * * *

www.firstranker.com

Max Marks: 80

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 ADVANCED CONTROL SYSTEMS (Electronics & Control Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions All questions carry equal marks ****

- 1. (a) Explain about different properties of state transition matrix.
 - (b) Explain:
 - i. Controllable canonical form
 - ii. Jordan canonical form
- 2. (a) Determine the state controllability for the system represented by the state equation:

$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

- (b) Explain how linear time invariant system transform into controllability canonical form.
- 3. (a) Explain the effect of inherent nonlinearities on static accuracy
 - (b) Derive the describe function for an on-off non linearity with hysteresis.
- 4. Explain the construction of phase trajectory by using
 - (a) Analytical method.
 - (b) Isocline method.
- 5. Determine the stability of the system described by the equation:

x = A.x. where, $A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$ using lyapunov's direct method.

- 6. (a) For a multi input system explain pole placement by state feedback.
 - (b) Explain the designing of reduced order observer with neat block diagram.
- 7. (a) Find the Eular-lagrangine equations and the boundary conditions for the extremal of the functional

$$J(x) = \int_0^{\pi/2} (x_1^2 + 2x_1x_2 + x_2^2) dt.$$

 $x_1(0) = 0, x_1(\frac{\pi}{2}) = -1$ is free.

- (b) Discuss the application of Eular-lagrangine equation.
- 8. (a) Explain output regulator problem.
 - (b) Explain tracking problem.
